Multiple Instance Fuzzy Inference Neural Networks
نویسندگان
چکیده
Fuzzy logic is a powerful tool to model knowledge uncertainty, measurements imprecision, and vagueness. However, there is another type of vagueness that arises when data have multiple forms of expression that fuzzy logic does not address quite well. This is the case for multiple instance learning problems (MIL). In MIL, an object is represented by a collection of instances, called a bag. A bag is labeled negative if all of its instances are negative, and positive if at least one of its instances is positive. Positive bags encode ambiguity since the instances themselves are not labeled. In this paper, we introduce fuzzy inference systems and neural networks designed to handle bags of instances as input and capable of learning from ambiguously labeled data. First, we introduce the Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) that extends the standard Sugeno style inference to handle reasoning with multiple instances. Second, we use MI-Sugeno to define and develop Multiple Instance Adaptive Neuro Fuzzy Inference System (MI-ANFIS). We expand the architecture of the standard ANFIS to allow reasoning with bags and derive a learning algorithm using backpropagation to identify the premise and consequent parameters of the network. The proposed inference system is tested and validated using synthetic and benchmark datasets suitable for MIL problems. We also apply the proposed MI-ANFIS to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.
منابع مشابه
Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملNonlinear Analysis of Nonlinearly Loaded Dipole Antenna in the Frequency Domain Using Fuzzy Inference
In this paper, inference model is proposed so as to analyze nonlinearly loaded dipole antenna. In modeling process, linear and nonlinear behavior of the problem is saved as simple and unchanged membership functions and the effect of incident wave on the induced voltage at different harmonies are then extracted easily. Consequently the model achieved is more efficient than previous studies using...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.04973 شماره
صفحات -
تاریخ انتشار 2016